August 17, 2011

End of Year Reflections: Algebra II

Continuing analysis of student's reflections... (see first post for a full description)

I'm not sure I want to share this publicly. To be honest, I didn't include some quotes because they were too depressing. This class was by far my most frustrating. A lot of that was me: it was my first year in a new school and I didn't understand what was covered in Algebra I, I'd never taught Algebra II before, I got irritated when students didn't remember how to do things that they really, really should know how to do by junior year. Some of it was the kids: most didn't start coming for extra help until the last quarter, they didn't work as a cohesive class, they didn't have high expectations of themselves. Plenty of the blame can go elsewhere: some went to 3 weeks of summer school over a year ago and that meant they 'got Algebra I', many weren't ready for Algebra I so they didn't retain as much, lots didn't want to take more math beyond Algebra II and society says that's fine, society also says math is hard and it's okay to say you're bad at it.  I learned a lot from this class, but I learned it all the hard way.  It helped that the other Algebra II teacher shared my frustrations, but I wish that we'd had time to work together.  Instead, after each chapter or two we made plans for adjustments next time we teach it, which neither of us will be able to enact this year since I'm not teaching Algebra II and she's taking a year off.  However, this post isn't about all that, it's about what the kids wrote in their reflections.

Most investigations in this class were of the "graph a lot of equations to find out what the different coefficients and constants do" variety. Shockingly, those didn't make it onto the list of favorite activities. We also acted out some of those when we studied parabolas (turning the squares on the floor into a giant coordinate grid), that activity didn't make it onto the list either. Other investigations included lots of numerical examples, followed by a generalization. Still not on the list! So, which ones did make the list? Just two:

The rolling markers lab, and the interest rates activity.

The rolling markers lab was pretty cool. We set up 'ramps' of different heights (folders propped on books), rolled markers down and measured the distance traveled. It was a nice review of scatter plots, best fit lines and the different equations used to describe lines. We had some fun building crazy ramps and trying to find markers which would roll in a straight line. It was from the first quarter and they remembered it at the end so clearly it made an impression.  I'll probably try this activity with my Learning Skills class this year (math for students with disabilities who can't access the traditional high school curriculum yet).

The interest rates project was bad. A couple other teachers wrote an outline while I was in a geometry meeting. I missed the discussion, I didn't make it precise before distributing it, and none of us were really thinking about exactly how low interest rates have fallen! Students went to the bank (or internet) to get rates on savings accounts and CD's. Pairs were given a certain amount of money to invest and then compare the outcomes of different scenarios. The scenarios were too vague and the final products reflected that. The idea was cool, the kids appreciated the value of it, but it was poorly executed on my part.

The specific topics they enjoyed or found challenging weren't particularly noteworthy, as in the other classes some students listed a topic as a favorite, while others listed it as hard. The one surprise came from a student who listed the same topic (factoring) as both hard and his favorite. That kid gets brownie points in my book.

After reading this you may be surprised to hear that the kids learned anything. They did, the class wasn't awful every day, but my lasting impression was of a group of rather uninspired kids. I didn't get them excited about math. When I asked them what they needed, all they could offer was a change of scenery might help. They did get more work done when we hung out in the library, but it was a very unsatisfying class in my mind. Still, they learned, and they can tell you about it in their own words:

  • If I try my hardest I could get a good grade

  • My intelligence is not enough, I need to work and study hard too

  • I found out that I can do it

  • I learn best by doing the work by myself

  • I need to study more and make practice problems

  • Study best with flashcards

  • Staying after can help you make up a lot of points and help you understand

  • When I really want something I can achieve it

  • I learn best by doing projects

  • I can learn to solve any problem with practice

  • There are at least 2 ways to do anything in math

That was the last of the End of Year Reflections (until next year!).  Maybe by now I have some more posts written, but this daily posting thing will definitely be a rarity, so I hope you didn't get used to it ;).

Take aways:
Thank goodness you're not teaching Algebra II again!! (jk, but not really)
Do rolling markers in Learning Skills
Emphasize importance of making up work early and often.

2 comments:

  1. The Rolling Markers sounds fun! If I was still teaching I would for sure add that in. Found your blog through f(t) and am excited to keep up with it. I am hosting a giveaway this week at my blog to TeachersPayTeachers and I would love for you to enter. Thanks and have a great day!
    http://lilmoptop.blogspot.com/2011/08/teaching-thursdays-kick-off-giveaway.html

    ReplyDelete
  2. Thanks for stopping by. Good luck with your giveaway!

    ReplyDelete